emE(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
    Vinv, ...)
emV(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
    Vinv, ...)
emEII(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emVII(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emEEI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emVEI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emEVI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emVVI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emEEE(data, mu, Sigma, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emEEV(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emVEV(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)
emVVV(data, mu, sigma, pro, eps, tol, itmax, equalPro, warnSingular,
      Vinv, ...)mu is a matrix whose columns are the means of the
    components.cdens.[,,k]th entry is the covariance matrix for the
    kth component of the mixture model.em, eps allow computations to
    proceed nearer to singularity. 
    The default is .Mclust$eps.Mclust$tol..Mclust$itmax..Mclust$equalPro..Mclust$warnSingular.hypvol to the data.
    Used only when pro includes an additional
    mixing proportion for a noise component.[i,k]th entry is the
    conditional probability of the ith observation belonging to
    the kth component of the mixture.[,,k]th entry gives the
    the covariance for the kth group in the best model. "info": Information on the iteration."warn": An appropriate warning if problems are
      encountered in the computations.do.call, allowing the output
  of e.g. mstep to be passed 
  without the need to specify individual parameters as arguments.em,
  mstep,
  mclustOptions,
  do.calldata(iris)
irisMatrix <- as.matrix(iris[,1:4])
irisClass <- iris[,5]
msEst <- mstepEEE(data = irisMatrix, z = unmap(irisClass))
names(msEst)
emEEE(data = irisMatrix, mu = msEst$mu, pro = msEst$pro,
cholSigma = msEst$cholSigma)
do.call("emEEE", c(list(data=irisMatrix), msEst)) ## alternative callRun the code above in your browser using DataLab