emE(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emV(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEII(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVII(data, mu, sigmasq, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEEI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVEI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEVI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVVI(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEEE(data, mu, Sigma, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emEEV(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVEV(data, mu, decomp, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
emVVV(data, mu, sigma, pro, eps, tol, itmax, equalPro, warnSingular,
Vinv, ...)
mu
is a matrix whose columns are the means of the
components.cdens
.[,,k]
th entry is the covariance matrix for the
kth component of the mixture model.em
, eps
allow computations to
proceed nearer to singularity.
The default is .Mclust$eps
.Mclust$tol
..Mclust$itmax
..Mclust$equalPro
..Mclust$warnSingular
.hypvol
to the data.
Used only when pro
includes an additional
mixing proportion for a noise component.[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.[,,k]
th entry gives the
the covariance for the kth group in the best model. "info"
: Information on the iteration."warn"
: An appropriate warning if problems are
encountered in the computations.do.call
, allowing the output
of e.g. mstep
to be passed
without the need to specify individual parameters as arguments.em
,
mstep
,
mclustOptions
,
do.call
data(iris)
irisMatrix <- as.matrix(iris[,1:4])
irisClass <- iris[,5]
msEst <- mstepEEE(data = irisMatrix, z = unmap(irisClass))
names(msEst)
emEEE(data = irisMatrix, mu = msEst$mu, pro = msEst$pro,
cholSigma = msEst$cholSigma)
do.call("emEEE", c(list(data=irisMatrix), msEst)) ## alternative call
Run the code above in your browser using DataLab