emE(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEII(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVII(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEEI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVEI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEVI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVVI(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEEE(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emEEV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVEV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
emVVV(data, parameters, prior=NULL, control=emControl(), warn=NULL, ...)
priorControl
.emControl()
..Mclust$warn
.do.call
.[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611-631. C. Fraley and A. E. Raftery (2005). Bayesian regularization for normal mixture estimation and model-based clustering. Technical Report, Department of Statistics, University of Washington.
C. Fraley and A. E. Raftery (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
me
,
mstep
,
mclustOptions
msEst <- mstepEEE(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)
emEEE(data = iris[,-5], parameters = msEst$parameters)
Run the code above in your browser using DataLab