Usage
enorm(e, m = 0, sd = 1, log.p = FALSE)
ebeta(e, a = 1, b = 1, log.p = FALSE)
eunif(e, min = 0, max = 1)
et(e, df, log.p = FALSE)
elnorm(e, meanlog = 0, sdlog = 1, log.p = FALSE)
egamma(e, shape, rate = 1, scale = 1/rate, log.p = FALSE)
eexp(e, rate = 1, log.p = FALSE)
echisq(e, df, log.p = FALSE)
Arguments
m, sd
mean and standard deviation of the Normal distribution.
a, b
positive parameters of the Beta distribution.
min, max
minimum, maximum of the uniform distribution.
df
degrees of freedom of the student t and chi squared distribution.
meanlog, sdlog
parameters of the lognormal distribution.
shape, rate, scale
parameters of the gamma distribution (with 2 different parametrizations)
and parameter of the exponential distribution which is a special case of the gamma
with shape=1.
log.p
logical; if TRUE, probabilities e are given as log(e).