# NOT RUN {
## EXAMPLE 1:
## We want to estimate the seroprevalence of Brucella abortus in a population
## of cattle. An estimate of the unknown prevalence of B. abortus in this
## population is 0.15. We would like to be 95% certain that our estimate is
## within 20% of the true proportion of the population that is seropositive
## to B. abortus. Calculate the required sample size.
n.crude <- epi.sssimpleestb(N = 1E+06, Py = 0.15, epsilon.r = 0.20,
conf.level = 0.95)
n.crude
## A total of 544 cattle need to be sampled to meet the survey requirements.
## EXAMPLE 1 (continued):
## Being seropositive to brucellosis is likely to cluster within herds.
## Otte and Gumm (1997) cite the intraclass correlation coefficient (rho) of
## Brucella abortus to be in the order of 0.09. Adjust the sample size
## estimate to account for clustering at the herd level. Assume that, on
## average, 20 animals will be sampled per herd:
## Let D equal the design effect and nbar equal the average number of
## individuals per cluster:
## rho = (D - 1) / (nbar - 1)
## Solving for D:
## D <- rho * (nbar - 1) + 1
rho <- 0.09; nbar <- 20
D <- rho * (nbar - 1) + 1
n.adj <- ceiling(n.crude * D)
n.adj
## After accounting for the presence of clustering at the herd level we
## estimate that a total of 1475 cattle need to be sampled to meet
## the requirements of the survey.
# }
Run the code above in your browser using DataLab