Learn R Programming

CopulaRegression (version 0.1-5)

epolicy_loss: Expectation of the policy loss

Description

Expectation and variance of the policy loss

Usage

epolicy_loss(mu, delta, lambda, theta, family, y.max = 300,zt=TRUE,compute.var=FALSE)

Arguments

mu
expectation of the Gamma distribution, can be a vector
delta
dispersion parameter of the Gamma distribution
lambda
parameter of the (zero-truncated) Poisson distribution, can be a vector of the same length as mu
theta
copula parameter
family
an integer defining the bivariate copula family: 1 = Gauss, 3 = Clayton, 4=Gumbel, 5=Frank
y.max
upper value of the finite sum that we use to approximate the infinite sum in the density, see below for details
zt
logical. If zt=TRUE, we use a zero-truncated Poisson variable. Otherwise, we use a Poisson variable. Default is TRUE.
compute.var
logical. If compute.var=TRUE, we also compute the variance of the policy loss. Default is FALSE.

Value

mean
expectation of the policy loss
var
variance of the policy loss

Details

For a Gamma distributed variable X and a (zero truncated) Possion variable Y, the policy loss is defined as $L=X\cdot Y$. Its density is an infinite sum of weighted Gamma densities. The parameter y.max is the upper value of the finite sum that approximates the infinite sum.

References

N. Kraemer, E. Brechmann, D. Silvestrini, C. Czado (2013): Total loss estimation using copula-based regression models. Insurance: Mathematics and Economics 53 (3), 829 - 839.

See Also

dpolicy_loss

Examples

Run this code
library(VineCopula)
mu<-1000
delta<-0.09
lambda<-2.5
family<-3
theta<-BiCopTau2Par(tau=0.5,family=family)
out<-epolicy_loss(mu,delta,lambda,theta,family)

Run the code above in your browser using DataLab