
Maximum likelihood estimation of spatial simultaneous autoregressive error models of the form:
where optimize()
first, and interval=
argument may need be set when the weights are not row-standardised. When etype
is “emixed”, a so-called spatial Durbin error model is fitted, while lmSLX
fits an lm
model augmented with the spatially lagged RHS variables, including the lagged intercept when the spatial weights are not row-standardised. create_WX
creates spatially lagged RHS variables, and is exposed for use in model fitting functions.
errorsarlm(formula, data=list(), listw, na.action, weights=NULL,
Durbin, etype, method="eigen", quiet=NULL, zero.policy=NULL,
interval = NULL, tol.solve=1.0e-10, trs=NULL, control=list())
spBreg_err(formula, data = list(), listw, na.action, Durbin, etype,
zero.policy=NULL, control=list())
lmSLX(formula, data = list(), listw, na.action, weights=NULL,
Durbin=TRUE, zero.policy=NULL)
create_WX(x, listw, zero.policy=NULL, prefix="")
A list object of class sarlm
"error"
simultaneous autoregressive error coefficient
GLS coefficient estimates
GLS coefficient standard errors (are equal to asymptotic standard errors)
log likelihood value at computed optimum
GLS residual variance
sum of squared GLS errors
number of parameters estimated
Log likelihood of the linear model for
AIC of the linear model for
coefficients of the linear model for
model matrix of the GLS model
response of the GLS model
response of the linear model for
model matrix of the linear model for
the method used to calculate the Jacobian
the call used to create this object
GLS residuals
object returned from numerical optimisation
Difference between residuals and response variable
TRUE if method=eigen
Not used yet
if ase=TRUE, the asymptotic standard error of
NULL for this model
if not NULL, details of aliased variables
Log-likelihood of the null linear model
Spatial DGP covariance matrix for Hausman test if available
line search interval
finite difference Hessian
optim
or fdHess
used
logical; is TRUE, asymptotic values inserted in fdHess where feasible
processing timings
number of calls to the log likelihood function during optimization
number of calls to the log likelihood function during numerical Hessian computation
a data frame of detval matrix row choices used by the SE toolbox classic method
zero.policy for this model
(possibly) named vector of excluded or omitted observations if non-default na.action argument used
weights used in model fitting
for “emixed” models, a list of three impact matrixes (impacts and standard errors) for direct, indirect and total impacts; total impacts calculated using gmodels::estimable
The internal sar.error.* functions return the value of the log likelihood function at \lambdalambda.
The lmSLX function returns an lm object with a mixedImps list of three impact matrixes (impacts and standard errors) for direct, indirect and total impacts; total impacts calculated using gmodels::estimable.
the desired accuracy of the optimization - passed to optimize()
(default=square root of double precision machine tolerance, a larger root may be used needed, see help(boston) for an example)
default TRUE, return the Vo matrix for a spatial Hausman test
default 250, if returnHcov=TRUE and the method is not “eigen”, pass this order to powerWeights
as the power series maximum limit
default NULL, then set to (method != "eigen") internally; use fdHess
to compute an approximate Hessian using finite differences when using sparse matrix methods; used to make a coefficient covariance matrix when the number of observations is large; may be turned off to save resources if need be
default FALSE, use fdHess
from nlme, if TRUE, use optim
to calculate Hessian at optimum
default “optimHess”, may be “nlm” or one of the optim
methods
default FALSE; logical value passed to qr
in the SSE log likelihood function
default FALSE; logical value used in the log likelihood function to choose compiled code for computing SSE
default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function
if NULL (default), set to FALSE to use a simplicial decomposition for the sparse Cholesky decomposition and method “Matrix_J”, set to as.logical(NA)
for method “Matrix”, if TRUE, use a supernodal decomposition
default 5; highest power of the approximating polynomial for the Chebyshev approximation
default 16; number of random variates
default 30; number of products of random variates matrix and spatial weights matrix
default “MMD”, alternative “RCM”
default 0.1, coefficient value for initial Cholesky decomposition in “spam_update”
default “MC”, used with method “moments”; alternatives “mult” and “moments”, for use if trs
is missing, trW
default TRUE, used with method “moments” to compute the Smirnov/Anselin correction term
default TRUE, used with method “moments” to truncate the Smirnov/Anselin correction term
default “LU”, may be “MC”
default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40
default 2000, as in SE toolbox; the size of the second stage lndet grid
default TRUE; if the method is not “eigen”, use asymmetric covariances rather than numerical Hessian ones if n <= small
default 1500; threshold number of observations for asymmetric covariances when the method is not “eigen”
default NULL, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values to the "SE_classic" and "SE_whichMin" methods
default FALSE; used in “LU_prepermutate”, note warnings given for lu
method
default NULL; may be used to pass a pre-computed vector of eigenvalues
default “SE_classic”; equivalent to the method
argument in lagsarlm
default c(-1, 1)
; used unmodified or set internally by jacobianSetup
default 2500L
; integer total number of draws
default 500L
; integer total number of omitted burn-in draws
default 1L
; integer thinning proportion
default FALSE
; inverse of quiet
argument in lagsarlm
default NULL
; not yet in use, precomputed matrix of log determinants
a list with the following components:
default FALSE; if TRUE use Metropolis or FALSE griddy Gibbs
default NULL
; values of the betas variance-covariance matrix, set to diag(k)*1e+12
if NULL
default NULL
; values of the betas set to 0 if NULL
default 0.5
; value of the autoregressive coefficient
default 1
; value of the residual variance
default 0
; informative Gamma(nu,d0) prior on sige
default 0
; informative Gamma(nu,d0) prior on sige
default 1.01
; parameter for beta(a1,a2) prior on rho
default 1.01
; parameter for beta(a1,a2) prior on rho
default 0.2
; initial tuning parameter for M-H sampling
default TRUE; include sige in lambda griddy Gibbs update
The asymptotic standard error of tol.solve
argument needs to be set to a smaller value than
the default, or the RHS variables can be centred or reduced in range.
Note that the fitted() function for the output object assumes that the response variable may be reconstructed as the sum of the trend, the signal, and the noise (residuals). Since the values of the response variable are known, their spatial lags are used to calculate signal components (Cressie 1993, p. 564). This differs from other software, including GeoDa, which does not use knowledge of the response variable in making predictions for the fitting data.
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion; Ord, J. K. 1975 Estimation methods for models of spatial interaction, Journal of the American Statistical Association, 70, 120-126; Anselin, L. 1988 Spatial econometrics: methods and models. (Dordrecht: Kluwer); Anselin, L. 1995 SpaceStat, a software program for the analysis of spatial data, version 1.80. Regional Research Institute, West Virginia University, Morgantown, WV; Anselin L, Bera AK (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles DEA (eds) Handbook of applied economic statistics. Marcel Dekker, New York, pp. 237-289; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York; LeSage J and RK Pace (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton.
Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. https://www.jstatsoft.org/v63/i18/.
Bivand, R. S., Hauke, J., and Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: An illustrated comparison of available methods. Geographical Analysis, 45(2), 150-179.
lm
, lagsarlm
, similar.listw
, summary.sarlm
, predict.sarlm
,
residuals.sarlm
, do_ldet
, estimable
# NOT RUN {
data(oldcol)
lw <- nb2listw(COL.nb, style="W")
ev <- eigenw(similar.listw(lw))
COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, quiet=FALSE, control=list(pre_eig=ev))
summary(COL.errW.eig)
COL.errW.eig_ev <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, control=list(pre_eig=ev))
all.equal(coefficients(COL.errW.eig), coefficients(COL.errW.eig_ev))
COL.errB.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
nb2listw(COL.nb, style="B"))
summary(COL.errB.eig)
W <- as(nb2listw(COL.nb), "CsparseMatrix")
trMatc <- trW(W, type="mult")
COL.errW.M <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix", quiet=FALSE, trs=trMatc)
summary(COL.errW.M)
COL.SDEM.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, etype="emixed", control=list(pre_eig=ev))
summary(COL.SDEM.eig)
COL.SDEM.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, Durbin=TRUE, control=list(pre_eig=ev))
summary(COL.SDEM.eig)
COL.SDEM.eig <- errorsarlm(CRIME ~ DISCBD + INC + HOVAL, data=COL.OLD,
lw, Durbin=~INC, control=list(pre_eig=ev))
summary(COL.SDEM.eig)
summary(impacts(COL.SDEM.eig))
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
summary(COL.SLX)
summary(impacts(COL.SLX))
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=TRUE)
summary(impacts(COL.SLX))
summary(COL.SLX)
COL.SLX <- lmSLX(CRIME ~ INC + HOVAL + I(HOVAL^2), data=COL.OLD, listw=lw, Durbin=~INC)
summary(impacts(COL.SLX))
summary(COL.SLX)
COL.SLX <- lmSLX(CRIME ~ INC, data=COL.OLD, listw=lw)
summary(COL.SLX)
summary(impacts(COL.SLX))
# }
# NOT RUN {
crds <- cbind(COL.OLD$X, COL.OLD$Y)
mdist <- sqrt(sum(diff(apply(crds, 2, range))^2))
dnb <- dnearneigh(crds, 0, mdist)
dists <- nbdists(dnb, crds)
f <- function(x, form, data, dnb, dists, verbose) {
glst <- lapply(dists, function(d) 1/(d^x))
lw <- nb2listw(dnb, glist=glst, style="B")
res <- logLik(lmSLX(form=form, data=data, listw=lw))
if (verbose) cat("power:", x, "logLik:", res, "\n")
res
}
opt <- optimize(f, interval=c(0.1, 4), form=CRIME ~ INC + HOVAL,
data=COL.OLD, dnb=dnb, dists=dists, verbose=TRUE, maximum=TRUE)
glst <- lapply(dists, function(d) 1/(d^opt$maximum))
lw <- nb2listw(dnb, glist=glst, style="B")
SLX <- lmSLX(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
summary(SLX)
summary(impacts(SLX))
# }
# NOT RUN {
NA.COL.OLD <- COL.OLD
NA.COL.OLD$CRIME[20:25] <- NA
COL.err.NA <- errorsarlm(CRIME ~ INC + HOVAL, data=NA.COL.OLD,
nb2listw(COL.nb), na.action=na.exclude)
COL.err.NA$na.action
COL.err.NA
resid(COL.err.NA)
# }
# NOT RUN {
lw <- nb2listw(COL.nb, style="W")
print(system.time(ev <- eigenw(similar.listw(lw))))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="eigen", control=list(pre_eig=ev))))
ocoef <- coefficients(COL.errW.eig)
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="eigen", control=list(pre_eig=ev, LAPACK=FALSE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="eigen", control=list(pre_eig=ev, compiled_sse=TRUE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix_J", control=list(super=TRUE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix_J", control=list(super=FALSE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix_J", control=list(super=as.logical(NA)))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix", control=list(super=TRUE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix", control=list(super=FALSE))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="Matrix", control=list(super=as.logical(NA)))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="spam", control=list(spamPivot="MMD"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="spam", control=list(spamPivot="RCM"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="spam_update", control=list(spamPivot="MMD"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
print(system.time(COL.errW.eig <- errorsarlm(CRIME ~ INC + HOVAL, data=COL.OLD,
lw, method="spam_update", control=list(spamPivot="RCM"))))
print(all.equal(ocoef, coefficients(COL.errW.eig)))
# }
# NOT RUN {
if (require(coda, quietly=TRUE)) {
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw)
print(summary(COL.err.Bayes))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
control=list(prior=list(lambdaMH=TRUE)))
print(summary(COL.err.Bayes))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
Durbin=TRUE)
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
Durbin=TRUE, control=list(prior=list(lambdaMH=TRUE)))
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
Durbin=~INC)
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
set.seed(1)
COL.err.Bayes <- spBreg_err(CRIME ~ INC + HOVAL, data=COL.OLD, listw=lw,
Durbin=~INC, control=list(prior=list(lambdaMH=TRUE)))
print(summary(COL.err.Bayes))
print(summary(impacts(COL.err.Bayes)))
print(raftery.diag(COL.err.Bayes, r=0.01))
}
# }
Run the code above in your browser using DataLab