Implements the expectation step in the EM algorithm for a parameterized Gaussian mixture model.
estepE(data, parameters, warn = NULL, …)
estepV(data, parameters, warn = NULL, …)
estepEII(data, parameters, warn = NULL, …)
estepVII(data, parameters, warn = NULL, …)
estepEEI(data, parameters, warn = NULL, …)
estepVEI(data, parameters, warn = NULL, …)
estepEVI(data, parameters, warn = NULL, …)
estepVVI(data, parameters, warn = NULL, …)
estepEEE(data, parameters, warn = NULL, …)
estepEEV(data, parameters, warn = NULL, …)
estepVEV(data, parameters, warn = NULL, …)
estepVVV(data, parameters, warn = NULL, …)
estepEVE(data, parameters, warn = NULL, …)
estepEVV(data, parameters, warn = NULL, …)
estepVEE(data, parameters, warn = NULL, …)
estepVVE(data, parameters, warn = NULL, …)
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
The parameters of the model:
pro
Mixing proportions for the components of the mixture. If the model includes a Poisson term for noise, there should be one more mixing proportion than the number of Gaussian components.
The mean for each component. If there is more than one component, this is a matrix whose columns are the means of the components.
variance
A list of variance parameters for the model.
The components of this list depend on the model
specification. See the help file for mclustVariance
for details.
Vinv
An estimate of the reciprocal hypervolume of the data region.
If not supplied or set to a negative value, the default is
determined by applying function hypvol
to the data.
Used only when pro
includes an additional
mixing proportion for a noise component.
A logical value indicating whether or certain warnings should be issued.
The default is given by mclust.options("warn")
.
Catches unused arguments in indirect or list calls via do.call
.
A list including the following components:
Character string identifying the model.
A matrix whose [i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.
The input parameters.
The logliklihood for the data in the mixture model.
"WARNING"
: An appropriate warning if problems are
encountered in the computations.
C. Fraley and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association.
C. Fraley, A. E. Raftery, T. B. Murphy and L. Scrucca (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
# NOT RUN {
msEst <- mstepEII(data = iris[,-5], z = unmap(iris[,5]))
names(msEst)
estepEII(data = iris[,-5], parameters = msEst$parameters)
# }
Run the code above in your browser using DataLab