The generator should return the same kind of data as accepted by
test_on_batch()
.
evaluate_generator(object, generator, steps, max_queue_size = 10)
Model object to evaluate
Generator yielding lists (inputs, targets) or (inputs, targets, sample_weights)
Total number of steps (batches of samples) to yield from
generator
before stopping.
maximum size for the generator queue
Scalar test loss (if the model has a single output and no metrics) or
list of scalars (if the model has multiple outputs and/or metrics). The
attribute model$metrics_names
will give you the display labels for the
scalar outputs.
Other model functions: compile
,
evaluate
, fit_generator
,
fit
, get_config
,
get_layer
,
keras_model_sequential
,
keras_model
, pop_layer
,
predict.keras.engine.training.Model
,
predict_generator
,
predict_on_batch
,
predict_proba
,
summary.keras.engine.training.Model
,
train_on_batch