Last chance! 50% off unlimited learning
Sale ends in
Estimates the two parameters of the exponentiated exponential distribution by maximum likelihood estimation.
expexpff(lrate = "loglink", lshape = "loglink",
irate = NULL, ishape = 1.1, tolerance = 1.0e-6, zero = NULL)
Parameter link functions for the
Links
for more choices.
The defaults ensure both parameters are positive.
Initial value for the
Initial value for the ishape
.
Numeric. Small positive value for testing whether values are close enough to 1 and 2.
An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The default is none of them. If used, choose one value from the set {1,2}.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
and vgam
.
Practical experience shows that reasonably good initial values really
helps. In particular, try setting different values for the ishape
argument if numerical problems are encountered or failure to convergence
occurs. Even if convergence occurs try perturbing the initial value
to make sure the global solution is obtained and not a local solution.
The algorithm may fail if the estimate of the shape parameter is
too close to unity.
The exponentiated exponential distribution is an alternative
to the Weibull and the gamma distributions.
The formula for the density is
This distribution has been called the two-parameter generalized
exponential distribution by Gupta and Kundu (2006).
A special case of the exponentiated exponential distribution:
Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biometrical Journal, 43, 117--130.
Gupta, R. D. and Kundu, D. (2006). On the comparison of Fisher information of the Weibull and GE distributions, Journal of Statistical Planning and Inference, 136, 3130--3144.
# NOT RUN {
# A special case: exponential data
edata <- data.frame(y = rexp(n <- 1000))
fit <- vglm(y ~ 1, fam = expexpff, data = edata, trace = TRUE, maxit = 99)
coef(fit, matrix = TRUE)
Coef(fit)
# Ball bearings data (number of million revolutions before failure)
edata <- data.frame(bbearings = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40))
fit <- vglm(bbearings ~ 1, fam = expexpff(irate = 0.05, ish = 5),
trace = TRUE, maxit = 300, data = edata)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(rate=0.0314, shape=5.2589)
logLik(fit) # Authors get -112.9763
# Failure times of the airconditioning system of an airplane
eedata <- data.frame(acplane = c(23, 261, 87, 7, 120, 14, 62, 47,
225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14,
71, 11, 14, 11, 16, 90, 1, 16, 52, 95))
fit <- vglm(acplane ~ 1, fam = expexpff(ishape = 0.8, irate = 0.15),
trace = TRUE, maxit = 99, data = eedata)
coef(fit, matrix = TRUE)
Coef(fit) # Authors get c(rate=0.0145, shape=0.8130)
logLik(fit) # Authors get log-lik -152.264
# }
Run the code above in your browser using DataLab