The function \({\rm MSPE}_{\Delta_1, \Delta_2}^{(p,h)}(u)\) is defined, for real-valued \(u\) and
\(\Delta_1, \Delta_2 \geq 0\), in terms of the second order properties of the process:
$${\rm MSPE}_{\Delta_1, \Delta_2}^{(p,h)}(u) := \int_0^1 g^{(p,h)}_{\Delta_1}\Big( u + \Delta_2 (1-x) \Big) {\rm d}x,$$
with \(g^{(0,h)}_{\Delta}(u) := \gamma_0(u)\) and, for \(p = 1, 2, \ldots\),
$$g^{(p,h)}_{\Delta}(u) := \gamma_0(u) - 2 \big( v_{\Delta}^{(p,h)}(u) \big)' \gamma_0^{(p,h)}(u) + \big( v_{\Delta}^{(p,h)}(u) \big)' \Gamma_0^{(p)}(u) v_{\Delta}^{(p,h)}(u)$$
$$\gamma_0^{(p,h)}(u) := \big( \gamma_h(u), \ldots, \gamma_{h+p-1}(u) \big)',$$
where
$$v^{(p,h)}_{\Delta}(u) := e'_1 \big( e_1 \big( a_{\Delta}^{(p)}(t) \big)' + H \big)^h,$$
with \(e_1\) and \(H\) defined in the documentation of predCoef
and,
for every real-valued \(u\) and \(\Delta \geq 0\),
$$a^{(p)}_{\Delta}(u) := \Gamma^{(p)}_{\Delta}(u)^{-1} \gamma^{(p)}_{\Delta}(u),$$
where
$$\gamma^{(p)}_{\Delta}(u) := \int_0^1 \gamma^{(p)}(u+\Delta (x-1)) {\rm d}x, \quad \gamma^{(p)}(u) := [\gamma_1(u)\;\ldots\;\gamma_p(u)]',$$
$$\Gamma^{(p)}_{\Delta}(u) := \int_0^1 \Gamma^{(p)}(u+\Delta (x-1)) {\rm d}x, \quad \Gamma^{(p)}(u) := (\gamma_{i-j}(u);\,i,j=1,\ldots,p).$$
The local autocovariances \(\gamma_k(u)\) are defined as the lag-\(k\)
autocovariances of an AR(p) process which has coefficients
\(a_1(u), \ldots, a_p(u)\) and innovations with variance \(\sigma(u)^2\),
because the underlying model is assumed to be tvAR(p)
$$Y_{t,T} = \sum_{j=1}^p a_j(t/T) Y_{t-j,T} + \sigma(t/T) \varepsilon_{t},$$
where \(a_1, \ldots, a_p\) are real valued functions (defined on \([0,1]\)) and \(\sigma\) is a
positive function (defined on \([0,1]\)).