# For example, let's fit the following two admixture graph to an example data on bears:
data(bears)
print(bears)
leaves <- c("BLK", "PB", "Bar", "Chi1", "Chi2", "Adm1", "Adm2", "Denali", "Kenai", "Sweden")
inner_nodes <- c("R", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "M", "N")
edges <- parent_edges(c(edge("BLK", "R"),
edge("PB", "v"),
edge("Bar", "x"),
edge("Chi1", "y"),
edge("Chi2", "y"),
edge("Adm1", "z"),
edge("Adm2", "z"),
edge("Denali", "t"),
edge("Kenai", "s"),
edge("Sweden", "r"),
edge("q", "R"),
edge("r", "q"),
edge("s", "r"),
edge("t", "s"),
edge("u", "q"),
edge("v", "u"),
edge("w", "M"),
edge("x", "N"),
edge("y", "x"),
edge("z", "w"),
admixture_edge("M", "u", "t"),
admixture_edge("N", "v", "w")))
admixtures <- admixture_proportions(c(admix_props("M", "u", "t", "a"),
admix_props("N", "v", "w", "b")))
bears_graph <- agraph(leaves, inner_nodes, edges, admixtures)
plot(bears_graph, show_admixture_labels = TRUE)
fit <- fast_fit(bears, bears_graph)
print(fit$best_error)
# The result is just the minimal value of the cost function and the values of admixture proportions
# where it's obtained, no deeper analysis of the fit.
Run the code above in your browser using DataLab