Learn R Programming

fcd (version 0.1)

fcd: Fused community detection.

Description

Get the fused community detection path object.

Usage

fcd(A, K = 2, nlambda = 1e+3, lambda.min.ratio = 1e-05, alpha = 0.8, scale = FALSE) fcd.start(A, K = 2, nlambda = 1000, lambda.min.ratio = 1e-05, alpha = 0.8, scale = FALSE)

Arguments

A
input matrix -- adjacency matrix of an observed graph based on the non-isolated nodes, of dimension n.noniso x n.noniso, where n.noniso is the number of the non-isolated nodes.
K
input integer -- the pre-specified number of communities, with the default value 2.
nlambda
The number of lambda values - default is 1000.
lambda.min.ratio
Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero) - default is 1e-05.
alpha
The elasticnet mixing parameter - default is 0.8.
scale
The logic indicator of whether scaling the resulting matrix - default is FALSE.

Value

beta.combind
the estimators along the path.
iso.seq
a vector of indices of the isolated nodes.
cluster.list
list of clustering results.
criteria.list
list of criteria values.
final.ratio.cluster
the final estimator of the community labels according to the ratio cut criterion.
ratio.location
the location of the chosen estimator on the path according to the ratio cut criterion.
final.normalised.cluster
the final estimator of the community labels according to the normalised cut criterion.
normalised.location
the location of the chosen estimator on the path according to the normalised cut criterion.
lambda.list
the lambda sequence used for the path.

References

Feng, Y., Samworth, R. J. and Yu, Y., Fused Community Detection, manuscript.