the value of function fun evaluated at the
parameter values pars
gradient
an approximate gradient (of length length(pars)).
Hessian
a matrix whose upper triangle contains an approximate Hessian.
Arguments
pars
the numeric values of the parameters at which to evaluate the
function fun and its derivatives.
fun
a function depending on the parameters pars that
returns a numeric scalar.
...
Optional additional arguments to fun
.relStep
The relative step size to use in the finite
differences. It defaults to the cube root of .Machine$double.eps
minAbsPar
The minimum magnitude of a parameter value that is
considered non-zero. It defaults to zero meaning that any non-zero
value will be considered different from zero.
This function uses a second-order response surface design known as a
“Koschal design” to determine the parameter values at which the
function is evaluated.