Learn R Programming

BALD (version 1.0.0-3)

finalCumulativeDiff: A generic function to plot and/or return the difference between final actual and predicted cumulative payments.

Description

A generic function to plot and/or return the difference between final actual and predicted cumulative payments. See vignette('BALD').

Arguments

object

The object from which to plot and/or return the difference.

plot

A logical value. If TRUE, the plot is generated and the statistics are returned; otherwise only the statistics are returned.

expYearRange

Either a range of years (for example c(1995, 2006)) or one of the keywords “all” or “fullyObs”.

Value

Mainly called for the side effect of plotting.

See Also

finalCumulativeDiff("AnnualAggLossDevModelOutput")

Examples

Run this code
# NOT RUN {
rm(list=ls())
library(BALD)
options(device.ask.default=FALSE)
data(IncrementalGeneralLiablityTriangle)
IncrementalGeneralLiablityTriangle <- as.matrix(IncrementalGeneralLiablityTriangle)
print(IncrementalGeneralLiablityTriangle)
data(PCE)
PCE <- as.matrix(PCE)[,1]
PCE.rate <- PCE[-1] / PCE[-length(PCE)] - 1
PCE.rate.length <- length(PCE.rate)
PCE.years <- as.integer(names(PCE.rate))
years.available <- PCE.years <= max(as.integer(
dimnames(IncrementalGeneralLiablityTriangle)[[1]]))
PCE.rate <- PCE.rate[years.available]
PCE.rate.length <- length(PCE.rate)
standard.model.input <- makeStandardAnnualInput(
incremental.payments = IncrementalGeneralLiablityTriangle,
stoch.inflation.weight = 1,
non.stoch.inflation.weight = 0,
stoch.inflation.rate = PCE.rate,
exp.year.type = 'ay',
extra.dev.years=5,
use.skew.t=TRUE)
# }
# NOT RUN {
standard.model.output <- runLossDevModel(
standard.model.input,
burnIn=30.0E+3,
sampleSize=30.0E+3,
thin=10)
finalCumulativeDiff(standard.model.output)
# }

Run the code above in your browser using DataLab