fingerprint.regression(data, eco.rnd = c("taxa.labels", "richness",
"frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap"),
eco.method = c("quantile", "lm", "mantel"), eco.permute = 1000,
evo.method = c("lambda", "delta", "kappa", "blom.k"), eco.swap = 1000,
abundance = TRUE, ...)## S3 method for class 'fingerprint.regression':
print(x, ...)
## S3 method for class 'fingerprint.regression':
summary(object, ...)
## S3 method for class 'fingerprint.regression':
plot(x, eco = c("slope", "corrected"),
xlab = "Community Trait Similarity", ylab = "Phylogenetic inertia", ...)
comparative.comm
for analysistaxa.labels
(DEFAULT),
richness
, frequency
, sample.pool
,
phylogeny.pool
, independentswap
, trialswap
eco.rnd
); default 1000lambda
(default), delta
, kappa
, blom.k
;
see phy.signal
.eco.rnd
; DEFAULT 1000)fingerprint.regression
objectfingerprint.regression
objectslope
), or the
median difference between the simulations and the observed values
(corrected
)Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. & Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11): 1463--1464.
Pagel M. Inferring the historical patterns of biological evolution. Nature 401(6756): 877--884.
eco.xxx.regression
phy.signal
data(laja)
data <- comparative.comm(invert.tree, river.sites, invert.traits, river.env)
fingerprint.regression(data, eco.permute=10)
plot(fingerprint.regression(data, permute=10, method="lm"))
Run the code above in your browser using DataLab