
fisherz(theta, bminvalue = NULL, bmaxvalue = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
theta
which are less than or equal to $-1$ can be
replaced by bminvalue
before computing the link function value.
Values of theta
which are greater than or equal to $1$ canLinks
.deriv = 0
,
0.5 * log((1+theta)/(1-theta))
(same as atanh(theta)
)
when inverse = FALSE
,
and if inverse = TRUE
then
(exp(2*theta)-1)/(exp(2*theta)+1)
(same as tanh(theta)
).
For deriv = 1
, then the function returns
d theta
/ d eta
as a function of theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
fisherz
link function is commonly used for parameters that
lie between $-1$ and $1$.
Numerical values of theta
close to $-1$ or $1$ or
out of range result in
Inf
, -Inf
, NA
or NaN
.Links
,
rhobit
,
atanh
,
logit
.theta <- seq(-0.99, 0.99, by = 0.01)
y <- fisherz(theta)
plot(theta, y, type = "l", las = 1, ylab = "",
main = "fisherz(theta)", col = "blue")
abline(v = (-1):1, h = 0, lty = 2, col = "gray")
x <- c(seq(-1.02, -0.98, by = 0.01), seq(0.97, 1.02, by = 0.01))
fisherz(x) # Has NAs
fisherz(x, bminvalue = -1 + .Machine$double.eps,
bmaxvalue = 1 - .Machine$double.eps) # Has no NAs
Run the code above in your browser using DataLab