Learn R Programming

copula (version 0.999-19.1)

fitMvdc: Estimation of Multivariate Models Defined via Copulas

Description

Fitting copula-based multivariate distributions ("'>mvdc") to multivariate data, estimating both the marginal and the copula parameters.

If you assume non parametric margins, in other words, take the empirical distributions for all margins, you can use fitCopula(*, pobs(x)) instead.

Usage

loglikMvdc(param, x, mvdc)
fitMvdc(data, mvdc, start, optim.control = list(), method = "BFGS",
        lower = -Inf, upper = Inf,
        estimate.variance = fit$convergence == 0, hideWarnings = TRUE)

# S3 method for fittedMV coef(object, SE = FALSE, …) # S3 method for fittedMV logLik(object, …) # S3 method for fittedMV vcov(object, …)

Arguments

param

a vector of parameter values. When specifying parameters for mvdc objects, the parameters must be ordered with the marginals first and the copula parameters last. When the mvdc object has marginsIdentical = TRUE, only the parameters of one marginal must be specified.

x

a data matrix.

mvdc

a "'>mvdc" object.

data

a data matrix.

start

a vector of starting value for "param". See "param" above for ordering of this vector.

optim.control

a list of controls to be passed to optim.

method

the method for optim.

lower, upper

bounds on each parameter, passed to optim, typically “box constraints” for method = "L-BFGS-B".

estimate.variance

logical; if true (as by default, if the optimization converges), the asymptotic variance is estimated.

hideWarnings

logical indicating if warning messages from likelihood maximization, e.g., from evaluating at invalid parameter values, should be suppressed (via suppressWarnings).

object

an R object of class "'>fitMvdc".

SE

for the coef method, a logical indicating if standard errors should be returned in addition to the estimated parameters (in a matrix). This is equivalent, but more efficient than, e.g., coef(summary(object)).

potentially further arguments to methods.

Value

The return value loglikMvdc() is the log likelihood evaluated for the given value of param.

The return value of fitMvdc() is an object of class "'>fitMvdc" (see there), containing slots (among others!):

estimate

the estimate of the parameters.

var.est

large-sample (i.e., asymptotic) variance estimate of the parameter estimator (filled with NA if estimate.variance = FALSE).

mvdc

the fitted multivariate distribution, see '>mvdc.

%% FIXME -- formatting -- because of the special way \item is handled %% inside \value{...}, there is no empty line put here, even though we %% want it.

The summary() method for "fitMvdc" objects returns a S3 class "summary.fitMvdc", simply a list with components method, loglik, and convergence, all three from corresponding slots of the "'>fitMvdc" objects, and

coefficients

a matrix of estimated coefficients, standard errors, t values and p-values.

See Also

mvdc and '>mvdc; further, Copula, fitCopula, gofCopula.

For fitting univariate marginals, fitdistr().

Examples

Run this code
# NOT RUN {
G3 <- gumbelCopula(3, dim=2)
gMvd2  <- mvdc(G3, c("exp","exp"),
               param = list(list(rate=2), list(rate=4)))
## with identical margins:
gMvd.I <- mvdc(G3, "exp",
               param = list(rate=3), marginsIdentical=TRUE)

(Xtras <- copula:::doExtras()) # determine whether examples will be extra (long)
n <- if(Xtras) 10000 else 200 # sample size (realistic vs short for example)

set.seed(11)
x <- rMvdc(n, gMvd2)
## Default:     hideWarnings = FALSE .. i.e. show warnings here
fit2 <- fitMvdc(x, gMvd2, start = c(1,1, 2))
fit2
confint(fit2)
summary(fit2) # slightly more
## The estimated, asymptotic var-cov matrix [was used for confint()]:
vcov(fit2)

## with even more output for the "identical margin" case:
fitI <- fitMvdc(x, gMvd.I, start = c(3, 2),
                optim.control=list(trace= TRUE, REPORT= 2))
summary(fitI)
coef(fitI, SE = TRUE)
stopifnot(is.matrix(coef(fitI, SE = TRUE)),
          is.matrix(print( confint(fitI) )) )

## a wrong starting value can already be *the* problem:
f2 <- try(fitMvdc(x, gMvd.I, start = c(1, 1),
           optim.control=list(trace= TRUE, REPORT= 2)))
##--> Error in optim( ... ) : non-finite finite-difference value [2]

##==> "Solution" :  Using a more robust (but slower) optim() method:
fI.2 <- fitMvdc(x, gMvd.I, start = c(1, 1), method = "Nelder",
                optim.control=list(trace= TRUE))
fI.2
# }
# NOT RUN {
<!-- %dont... -->
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab