Generates batches of data from images in a directory (with optional augmented/normalized data)
flow_images_from_directory(directory, generator = image_data_generator(),
target_size = c(256, 256), color_mode = "rgb", classes = NULL,
class_mode = "categorical", batch_size = 32, shuffle = TRUE,
seed = NULL, save_to_dir = NULL, save_prefix = "",
save_format = "png", follow_links = FALSE)
path to the target directory. It should contain one subdirectory per class. Any PNG, JPG or BMP images inside each of the subdirectories directory tree will be included in the generator. See thisscript for more details.
Image data generator (default generator does no data augmentation/normalization transformations)
integer vectir, default: c(256, 256)
. The dimensions to
which all images found will be resized.
one of "grayscale", "rbg". Default: "rgb". Whether the images will be converted to have 1 or 3 color channels.
optional list of class subdirectories (e.g. c('dogs', 'cats')
). Default: NULL
, If not provided, the list of classes will be
automatically inferred (and the order of the classes, which will map to the
label indices, will be alphanumeric).
one of "categorical", "binary", "sparse" or NULL
.
Default: "categorical". Determines the type of label arrays that are
returned: "categorical" will be 2D one-hot encoded labels, "binary" will be
1D binary labels, "sparse" will be 1D integer labels. If NULL
, no labels
are returned (the generator will only yield batches of image data, which is
useful to use predict_generator()
, evaluate_generator()
, etc.).
int (default: 32
).
boolean (defaut: TRUE
).
int (default: NULL
).
NULL
or str (default: NULL
). This allows you to
optimally specify a directory to which to save the augmented pictures being
generated (useful for visualizing what you are doing).
str (default: ''). Prefix to use for filenames of saved
pictures (only relevant if save_to_dir
is set).
one of "png", "jpeg" (only relevant if save_to_dir is set). Default: "png".
whether to follow symlinks inside class subdirectories
(default: FALSE
)
(x, y)
where x
is an array of image data and y
is a
array of corresponding labels. The generator loops indefinitely.
Yields batches indefinitely, in an infinite loop.
Other image preprocessing: fit_image_data_generator
,
flow_images_from_data
,
image_load
, image_to_array