# NOT RUN {
data("CrinsEtAl2014")
# }
# NOT RUN {
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
es.crins <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
ci=cont.AR.events, n2i=cont.total,
slab=publication, data=CrinsEtAl2014)
# derive a prior distribution for the heterogeneity:
tp.crins <- TurnerEtAlPrior("surgical", "pharma", "placebo / control")
# perform meta-analysis:
ma.crins <- bayesmeta(es.crins, tau.prior=tp.crins$dprior)
########
# plot:
forest(ma.crins, xlab="log odds ratio")
forest(ma.crins, trans=exp, refline=1, xlab="odds ratio")
# }
Run the code above in your browser using DataLab