Learn R Programming

sparklyr (version 1.8.5)

ft_r_formula: Feature Transformation -- RFormula (Estimator)

Description

Implements the transforms required for fitting a dataset against an R model formula. Currently we support a limited subset of the R operators, including ~, ., :, +, and -.

Usage

ft_r_formula(
  x,
  formula = NULL,
  features_col = "features",
  label_col = "label",
  force_index_label = FALSE,
  uid = random_string("r_formula_"),
  ...
)

Value

The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

formula

R formula as a character string or a formula. Formula objects are converted to character strings directly and the environment is not captured.

features_col

Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula.

label_col

Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula.

force_index_label

(Spark 2.1.0+) Force to index label whether it is numeric or string type. Usually we index label only when it is string type. If the formula was used by classification algorithms, we can force to index label even it is numeric type by setting this param with true. Default: FALSE.

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

Details

The basic operators in the formula are:

  • ~ separate target and terms

  • + concat terms, "+ 0" means removing intercept

  • - remove a term, "- 1" means removing intercept

  • : interaction (multiplication for numeric values, or binarized categorical values)

  • . all columns except target

Suppose a and b are double columns, we use the following simple examples to illustrate the effect of RFormula:

  • y ~ a + b means model y ~ w0 + w1 * a + w2 * b where w0 is the intercept and w1, w2 are coefficients.

  • y ~ a + b + a:b - 1 means model y ~ w1 * a + w2 * b + w3 * a * b where w1, w2, w3 are coefficients.

RFormula produces a vector column of features and a double or string column of label. Like when formulas are used in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles. If the label column is of type string, it will be first transformed to double with StringIndexer. If the label column does not exist in the DataFrame, the output label column will be created from the specified response variable in the formula.

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, returning a tbl_spark.

See Also

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()