# NOT RUN {
# Multiple Correspondence Analysis
# ++++++++++++++++++++++++++++++
# Install and load FactoMineR to compute MCA
# install.packages("FactoMineR")
library("FactoMineR")
data(poison)
poison.active <- poison[1:55, 5:15]
head(poison.active)
res.mca <- MCA(poison.active, graph=FALSE)
# Graph of individuals
# +++++++++++++++++++++
# Default Plot
# Color of individuals: col.ind = "steelblue"
fviz_mca_ind(res.mca, col.ind = "steelblue")
# 1. Control automatically the color of individuals
# using the "cos2" or the contributions "contrib"
# cos2 = the quality of the individuals on the factor map
# 2. To keep only point or text use geom = "point" or geom = "text".
# 3. Change themes: http://www.sthda.com/english/wiki/ggplot2-themes
fviz_mca_ind(res.mca, col.ind = "cos2", repel = TRUE)
# }
# NOT RUN {
# You can also control the transparency
# of the color by the cos2
fviz_mca_ind(res.mca, alpha.ind="cos2")
# }
# NOT RUN {
# Color individuals by groups, add concentration ellipses
# Remove labels: label = "none".
grp <- as.factor(poison.active[, "Vomiting"])
p <- fviz_mca_ind(res.mca, label="none", habillage=grp,
addEllipses=TRUE, ellipse.level=0.95)
print(p)
# Change group colors using RColorBrewer color palettes
# Read more: http://www.sthda.com/english/wiki/ggplot2-colors
p + scale_color_brewer(palette="Dark2") +
scale_fill_brewer(palette="Dark2")
# Change group colors manually
# Read more: http://www.sthda.com/english/wiki/ggplot2-colors
p + scale_color_manual(values=c("#999999", "#E69F00"))+
scale_fill_manual(values=c("#999999", "#E69F00"))
# Select and visualize some individuals (ind) with select.ind argument.
# - ind with cos2 >= 0.4: select.ind = list(cos2 = 0.4)
# - Top 20 ind according to the cos2: select.ind = list(cos2 = 20)
# - Top 20 contributing individuals: select.ind = list(contrib = 20)
# - Select ind by names: select.ind = list(name = c("44", "38", "53", "39") )
# Example: Select the top 40 according to the cos2
fviz_mca_ind(res.mca, select.ind = list(cos2 = 20))
# Graph of variable categories
# ++++++++++++++++++++++++++++
# Default plot: use repel = TRUE to avoid overplotting
fviz_mca_var(res.mca, col.var = "#FC4E07")
# Control variable colors using their contributions
# use repel = TRUE to avoid overplotting
fviz_mca_var(res.mca, col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))
# Biplot
# ++++++++++++++++++++++++++
grp <- as.factor(poison.active[, "Vomiting"])
fviz_mca_biplot(res.mca, repel = TRUE, col.var = "#E7B800",
habillage = grp, addEllipses = TRUE, ellipse.level = 0.95)
# }
# NOT RUN {
# Keep only the labels for variable categories:
fviz_mca_biplot(res.mca, label ="var")
# Keep only labels for individuals
fviz_mca_biplot(res.mca, label ="ind")
# Hide variable categories
fviz_mca_biplot(res.mca, invisible ="var")
# Hide individuals
fviz_mca_biplot(res.mca, invisible ="ind")
# Control automatically the color of individuals using the cos2
fviz_mca_biplot(res.mca, label ="var", col.ind="cos2")
# Change the color by groups, add ellipses
fviz_mca_biplot(res.mca, label="var", col.var ="blue",
habillage=grp, addEllipses=TRUE, ellipse.level=0.95)
# Select the top 30 contributing individuals
# And the top 10 variables
fviz_mca_biplot(res.mca,
select.ind = list(contrib = 30),
select.var = list(contrib = 10))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab