gamEst: Estimate variance model parameter \(\gamma\)
Description
Regresses a y on a set of covariates X where \(Var_M(y)=\sigma^2x^\gamma\) and then
regresses the squared residuals on \(log(x)\) to estimate \(\gamma\).
Usage
gamEst(X1, x1, y1, v1)
Arguments
X1
matrix of predictors in the linear model for y1
x1
vector of x's for individual units in the assumed specification of \(Var_M(y)\)
y1
vector of dependent variables for individual units
v1
vector proportional to \(Var_M(y)\)
Value
The estimate of \(\gamma\).
Details
The function gamEst estimates the power \(\gamma\) in a model where the variance
of the errors is proportional to \(x^\gamma\) for some covariate x.
Values of \(\gamma\) are typically in [0,2]. The function is iteratively called by gammaFit, which is normally the function that an analyst should use.
References
Valliant, R., Dever, J., Kreuter, F. (2018, chap. 3). Practical Tools for Designing and Weighting Survey Samples, 2nd edition. New York: Springer.