# NOT RUN {
# }
# NOT RUN {
Computes the arithmetic mean of the second column by grouping
on the first and third columns. Output the grouping values and the average.
df <- createDataFrame (
list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
c("a", "b", "c", "d"))
Here our output contains three columns, the key which is a combination of two
columns with data types integer and string and the mean which is a double.
schema <- structType(structField("a", "integer"), structField("c", "string"),
structField("avg", "double"))
result <- gapply(
df,
c("a", "c"),
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
We can also group the data and afterwards call gapply on GroupedData.
For Example:
gdf <- group_by(df, "a", "c")
result <- gapply(
gdf,
function(key, x) {
y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
}, schema)
collect(result)
Result
------
a c avg
3 3 3.0
1 1 1.5
Fits linear models on iris dataset by grouping on the 'Species' column and
using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
and 'Petal_Width' as training features.
df <- createDataFrame (iris)
schema <- structType(structField("(Intercept)", "double"),
structField("Sepal_Width", "double"),structField("Petal_Length", "double"),
structField("Petal_Width", "double"))
df1 <- gapply(
df,
df$"Species",
function(key, x) {
m <- suppressWarnings(lm(Sepal_Length ~
Sepal_Width + Petal_Length + Petal_Width, x))
data.frame(t(coef(m)))
}, schema)
collect(df1)
Result
---------
Model (Intercept) Sepal_Width Petal_Length Petal_Width
1 0.699883 0.3303370 0.9455356 -0.1697527
2 1.895540 0.3868576 0.9083370 -0.6792238
3 2.351890 0.6548350 0.2375602 0.2521257
# }
Run the code above in your browser using DataLab