Learn R Programming

adana (version 1.1.0)

gaussmut: Gauss Mutation

Description

Gauss Mutation is an operator made by adding randomly selected values from a normal distribution with a mean of 0 and a standard deviation of sigma to a randomly selected gene in the chromosome (Michalewicz, 1995; Back et.al., 1991; Fogel, 1995).

This operator is used for value encoded (integer or real number) chromosomes.

Usage

gaussmut(y, mutsdy, ...)

Arguments

y

A vector. Chromosome of the offspring

mutsdy

A vector. Vector of standard deviations of genes

Further arguments passed to or from other methods.

Value

mutant

A vector. Chromosome of the offspring

mutgen

The number of the mutated gene.

References

Michalewicz, Z. (1995). Genetic algorithms, numerical optimizations and constraints. In Proc. of the 6th. Int. Conf. on Genetic Algorithms, pp. 151-158. Morgan Kaufmann.

Back, T., Hoffmeister, F. and Schwefel, H.F. (1991). A survey of elolution strategies. In Proc. of the 4th. Int. Conf. on Genetic Algorithms (eds. R.K. Belew and L.B. Booker), pp. 2-9. Morgan Kaufmann.

Fogel D.B. (1995). Evolutionary computation. Toward a new philosophy of machine intellegence. Piscataway, NJ: IEEE Press.

See Also

mutate, bitmut, randmut, randmut2, randmut3, randmut4, unimut, boundmut, nunimut, nunimut2, powmut, powmut2, gaussmut2, gaussmut3, bsearchmut1, bsearchmut2, swapmut, invmut, shufmut, insmut, dismut, invswapmut, insswapmut, invdismut

Examples

Run this code
# NOT RUN {
mutsdy = c(1, 1.5, 1.01, 0.4, 1.5, 1.2)
offspring = c(8, 6, 4, 1, 3, 7)
set.seed(12)
gaussmut(offspring)
# }

Run the code above in your browser using DataLab