Learn R Programming

dmt (version 0.8.20)

generate.toydata: Toy data generation

Description

Generate simulated data which follows the distributional assumptions of the model.

Usage

generate.toydata(N = 100, zDim = 2, xDim = 3, yDim = 3, marginal.covariances = "full", priors = NULL)

Arguments

N
Sample size.
zDim
Dimensionality of the latent variable.
xDim
Dimensionality of X data set.
yDim
Dimensionality of Y data set.
marginal.covariances
"full": full covariance matrices for marginal noise (assumed by pCCA); "diagonal": diagonal covariances for marginal noise (pFA); "isotropic": isotropic covariances (pPCA).
priors
Set priors for toydata generation. Use as in fit.dependency.model.

Value

List with the following components:
Z, Zx, Zy
Shared and data-set specific latent variables.
Wx, Wy, Bx, By
Transformation matrices.
X, Y
Data sets.

Details

Assuming normally distributed latent variables for shared component Z, and data-specific components Zx, Zy. These follow standard multivariate normal distribution N(0, I). The observations X and Y are obtained as X = Wx*Z + Bx*Zx, Y = Wy*Z + By*Zy.

References

See citation("dmt") for references.

Examples

Run this code
                   zDim = 1, xDim = 3, yDim = 3, 
                   marginal.covariances = "full") 

Run the code above in your browser using DataLab