geom_path
)
except that the start and end points are connected and the inside is
coloured by fill
. The group
aesthetic determines which cases
are connected together into a polygon.
geom_polygon(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame.
, and
will be used as the layer data.
layer
. These are
often aesthetics, used to set an aesthetic to a fixed value, like
color = "red"
or size = 3
. They may also be parameters
to the paired geom/stat.FALSE
, the default, missing values are removed with
a warning. If TRUE
, missing values are silently removed.NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders
.geom_path
for an unfilled polygon,
geom_ribbon
for a polygon anchored on the x-axis
# When using geom_polygon, you will typically need two data frames:
# one contains the coordinates of each polygon (positions), and the
# other the values associated with each polygon (values). An id
# variable links the two together
ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))
values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)
positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)
)
# Currently we need to manually merge the two together
datapoly <- merge(values, positions, by = c("id"))
p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id))
p
# Which seems like a lot of work, but then it's easy to add on
# other features in this coordinate system, e.g.:
stream <- data.frame(
x = cumsum(runif(50, max = 0.1)),
y = cumsum(runif(50,max = 0.1))
)
p + geom_line(data = stream, colour = "grey30", size = 5)
# And if the positions are in longitude and latitude, you can use
# coord_map to produce different map projections.
Run the code above in your browser using DataLab