# NOT RUN {
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_violin()
# Orientation follows the discrete axis
ggplot(mtcars, aes(mpg, factor(cyl))) +
geom_violin()
# }
# NOT RUN {
p + geom_violin() + geom_jitter(height = 0, width = 0.1)
# Scale maximum width proportional to sample size:
p + geom_violin(scale = "count")
# Scale maximum width to 1 for all violins:
p + geom_violin(scale = "width")
# Default is to trim violins to the range of the data. To disable:
p + geom_violin(trim = FALSE)
# Use a smaller bandwidth for closer density fit (default is 1).
p + geom_violin(adjust = .5)
# Add aesthetic mappings
# Note that violins are automatically dodged when any aesthetic is
# a factor
p + geom_violin(aes(fill = cyl))
p + geom_violin(aes(fill = factor(cyl)))
p + geom_violin(aes(fill = factor(vs)))
p + geom_violin(aes(fill = factor(am)))
# Set aesthetics to fixed value
p + geom_violin(fill = "grey80", colour = "#3366FF")
# Show quartiles
p + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))
# Scales vs. coordinate transforms -------
if (require("ggplot2movies")) {
# Scale transformations occur before the density statistics are computed.
# Coordinate transformations occur afterwards. Observe the effect on the
# number of outliers.
m <- ggplot(movies, aes(y = votes, x = rating, group = cut_width(rating, 0.5)))
m + geom_violin()
m +
geom_violin() +
scale_y_log10()
m +
geom_violin() +
coord_trans(y = "log10")
m +
geom_violin() +
scale_y_log10() + coord_trans(y = "log10")
# Violin plots with continuous x:
# Use the group aesthetic to group observations in violins
ggplot(movies, aes(year, budget)) +
geom_violin()
ggplot(movies, aes(year, budget)) +
geom_violin(aes(group = cut_width(year, 10)), scale = "width")
}
# }
Run the code above in your browser using DataLab