Learn R Programming

recommenderlab (version 0.2-6)

evaluationScheme-class: Class "evaluationScheme": Evaluation Scheme

Description

An evaluation scheme created from a data set. The scheme can be a simple split into training and test data, k-fold cross-evaluation or using k bootstrap samples.

Arguments

Objects from the Class

Objects can be created by evaluationScheme(data, method="split", train=0.9, k=NULL, given=3).

Slots

data:

Object of class "ratingMatrix"; the data set.

given:

Object of class "integer"; given ratings are randomly selected for each evaluation user and presented to the recommender algorithm to calculate recommend items/ratings. The recommended items are compared to the remaining items for the evaluation user.

goodRating:

Object of class "numeric"; Rating at which an item is considered a positive for evaluation.

k:

Object of class "integer"; number of runs for evaluation. Default is 1 for method "split" and 10 for "cross-validation" and "bootstrap".

knownData:

Object of class "ratingMatrix"; data set with only known (given) items.

method:

Object of class "character"; evaluation method. Available methods are: "split", "cross-validation" and "bootstrap".

runsTrain:

Object of class "list"; internal repesentation for the split in training and test data for the evaluation runs.

train:

Object of class "numeric"; portion of data used for training for "split" and "bootstrap".

unknownData:

Object of class "ratingMatrix"; data set with only unknown items.

Methods

% \item{evaluate}{\code{signature(x = "evaluationScheme")}: ... }
getData

signature(x = "evaluationScheme"): access data. Parameters are type ("train", "known" or "unknown") and run (1...k). "train" returns the training data for the run, "known" returns the known ratings used for prediction for the test data, and "unknown" returns the ratings used for evaluation for the test data.

show

signature(object = "evaluationScheme")

See Also

'>ratingMatrix and the creator function evaluationScheme.