# Use the ovarian cancer data
data(Xdata, package="CGEN")
# Add fake principal component columns.
set.seed(123)
Xdata <- cbind(Xdata, PC1 = rnorm(nrow(Xdata)), PC2 = rnorm(nrow(Xdata)))
# Assign matched set size and case/control ratio stratifying by ethnic group
size <- ifelse(Xdata$ethnic.group == 3, 2, 4)
ratio <- sapply(Xdata$ethnic.group, switch, 1/2 , 2 , 1)
mx <- getMatchedSets(Xdata, CC=TRUE, NN=TRUE, ccs.var="case.control",
dist.vars=c("PC1","PC2") , strata.var="ethnic.group",
size = size, ratio = ratio, fixed=TRUE)
mx$NN[1:10]
mx$tblNN
# Example of using a dissimilarity matrix using catergorical covariates with
# Gower's distance
library("cluster")
d <- daisy(Xdata[, c("age.group","BRCA.history","gynSurgery.history")] ,
metric = "gower")
# Specify size = 4 as maximum matched set size in all strata
mx <- getMatchedSets(d, CC = TRUE, NN = TRUE, ccs.var = Xdata$case.control,
strata.var = Xdata$ethnic.group, size = 4,
fixed = FALSE)
mx$CC[1:10]
mx$tblCC
Run the code above in your browser using DataLab