powered by
Define a two dimensional feature space using the first two principal components generated from the fetures matrix returned by extract_tsfeatures
extract_tsfeatures
get_pc_space(features, robust = TRUE, kpc = 2)
Feature matrix returned by extract_tsfeatures
If TRUE, a robust PCA will be used on the feature matrix.
Desired number of components to return.
It returns a list with class 'pcattributes' containing the following components:
The scores of the firt kpc pricipal components
The centering and scaling used
the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). The function princomp returns this in the element loadings.
princomp
PCAproj, prcomp, find_odd_streams, extract_tsfeatures, set_outlier_threshold, gg_featurespace
PCAproj
prcomp
find_odd_streams
set_outlier_threshold
gg_featurespace
# NOT RUN { features <- extract_tsfeatures(anomalous_stream[1:100, 1:100]) pc <- get_pc_space(features) # }
Run the code above in your browser using DataLab