## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
rfsrc_iris <- rfsrc(Species ~ ., data = iris)
#data(rfsrc_iris, package="ggRandomForests")
gg_dta <- gg_vimp(rfsrc_iris)
plot(gg_dta)
## ------------------------------------------------------------
## regression example
## ------------------------------------------------------------
## Not run:
# ## -------- air quality data
# # rfsrc_airq <- rfsrc(Ozone ~ ., airquality)
# data(rfsrc_airq, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_airq)
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## -------- Boston data
# data(rfsrc_Boston, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_Boston)
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## -------- mtcars data
# data(rfsrc_mtcars, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_mtcars)
# plot(gg_dta)
# ## End(Not run)
## ------------------------------------------------------------
## survival example
## ------------------------------------------------------------
## Not run:
# ## -------- veteran data
# data(rfsrc_veteran, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_veteran)
# plot(gg_dta)
# ## End(Not run)
## Not run:
# ## -------- pbc data
# data(rfsrc_pbc, package="ggRandomForests")
# gg_dta <- gg_vimp(rfsrc_pbc)
# plot(gg_dta)
#
# # Restrict to only the top 10.
# gg_dta <- gg_vimp(rfsrc_pbc, nvar=10)
# plot(gg_dta)
# ## End(Not run)
Run the code above in your browser using DataLab