Last chance! 50% off unlimited learning
Sale ends in
Density, cumulative distribution function, quantile function and
random number generation for the extreme value mixture model with kernel density estimate for bulk
distribution between thresholds and conditional GPD beyond thresholds. The parameters are the kernel bandwidth
lambda
, lower tail (threshold ul
,
GPD scale sigmaul
and shape xil
and tail fraction phiul
)
and upper tail (threshold ur
, GPD scale sigmaur
and shape
xiR
and tail fraction phiur
).
dgkg(x, kerncentres, lambda = NULL,
ul = as.vector(quantile(kerncentres, 0.1)), sigmaul = sqrt(6 *
var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", log = FALSE)pgkg(q, kerncentres, lambda = NULL,
ul = as.vector(quantile(kerncentres, 0.1)), sigmaul = sqrt(6 *
var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", lower.tail = TRUE)
qgkg(p, kerncentres, lambda = NULL,
ul = as.vector(quantile(kerncentres, 0.1)), sigmaul = sqrt(6 *
var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", lower.tail = TRUE)
rgkg(n = 1, kerncentres, lambda = NULL,
ul = as.vector(quantile(kerncentres, 0.1)), sigmaul = sqrt(6 *
var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian")
quantiles
kernel centres (typically sample data vector or scalar)
bandwidth for kernel (as half-width of kernel) or NULL
lower tail threshold
lower tail GPD scale parameter (positive)
lower tail GPD shape parameter
probability of being below lower threshold TRUE
upper tail threshold
upper tail GPD scale parameter (positive)
upper tail GPD shape parameter
probability of being above upper threshold TRUE
bandwidth for kernel (as standard deviations of kernel) or NULL
kernel name (default = "gaussian"
)
logical, if TRUE then log density
quantiles
logical, if FALSE then upper tail probabilities
cumulative probabilities
sample size (positive integer)
dgkg
gives the density,
pgkg
gives the cumulative distribution function,
qgkg
gives the quantile function and
rgkg
gives a random sample.
Based on code by Anna MacDonald produced for MATLAB.
Extreme value mixture model combining kernel density estimate (KDE) for the bulk between thresholds and GPD beyond thresholds.
The user can pre-specify phiul
and phiur
permitting a parameterised value for the tail fractions phiul=TRUE
and phiur=TRUE
the tail fractions are estimated as the tail
fractions from the KDE bulk model.
The alternate bandwidth definitions are discussed in the
kernels
, with the lambda
as the default.
The bw
specification is the same as used in the
density
function.
The possible kernels are also defined in kernels
with the "gaussian"
as the default choice.
Notice that the tail fraction cannot be 0 or 1, and the sum of upper and lower tail
fractions phiul + phiur < 1
, so the lower threshold must be less than the upper,
ul < ur
.
The cumulative distribution function has three components. The lower tail with
tail fraction phiul=TRUE
)
upto the lower threshold mean(pnorm(x, kerncentres, bw))
and
pgpd(-x, -ul, sigmaul, xil, phiul)
. The KDE
bulk model between the thresholds pgpd(x, ur, sigmaur, xir, phiur)
.
The cumulative distribution function for the pre-specified tail fractions
If no bandwidth is provided lambda=NULL
and bw=NULL
then the normal
reference rule is used, using the bw.nrd0
function, which is
consistent with the density
function. At least two kernel
centres must be provided as the variance needs to be estimated.
See gpd
for details of GPD upper tail component and
dkden
for details of KDE bulk component.
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf
Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2), 353-360.
Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability density functions. IEEE Transactions on Computers C25(11), 1175-1179.
MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.
Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.
kernels
, kfun
,
density
, bw.nrd0
and dkde
in ks
package.
Other kdengpd: bckdengpd
,
fbckdengpd
, fgkg
,
fkdengpdcon
, fkdengpd
,
fkden
, kdengpdcon
,
kdengpd
, kden
Other gkg: fgkgcon
, fgkg
,
fkdengpd
, gkgcon
,
kdengpd
, kden
Other gkgcon: fgkgcon
, fgkg
,
fkdengpdcon
, gkgcon
,
kdengpdcon
Other bckdengpd: bckdengpdcon
,
bckdengpd
, bckden
,
fbckdengpdcon
, fbckdengpd
,
fbckden
, fkdengpd
,
kdengpd
, kden
Other fgkg: fgkg
# NOT RUN {
set.seed(1)
par(mfrow = c(2, 2))
kerncentres=rnorm(1000,0,1)
x = rgkg(1000, kerncentres, phiul = 0.15, phiur = 0.15)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgkg(xx, kerncentres, phiul = 0.15, phiur = 0.15))
# three tail behaviours
plot(xx, pgkg(xx, kerncentres), type = "l")
lines(xx, pgkg(xx, kerncentres,xil = 0.3, xir = 0.3), col = "red")
lines(xx, pgkg(xx, kerncentres,xil = -0.3, xir = -0.3), col = "blue")
legend("topleft", paste("Symmetric xil=xir=",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)
# asymmetric tail behaviours
x = rgkg(1000, kerncentres, xil = -0.3, phiul = 0.1, xir = 0.3, phiur = 0.1)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = 0.1, xir = 0.3, phiur = 0.1))
plot(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2),
type = "l", ylim = c(0, 0.4))
lines(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = 0.3, xir = 0.3, phiur = 0.3),
col = "red")
lines(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = TRUE, xir = 0.3, phiur = TRUE),
col = "blue")
legend("topleft", c("phiul = phiur = 0.2", "phiul = phiur = 0.3", "Bulk Tail Fraction"),
col=c("black", "red", "blue"), lty = 1)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab