golf("p", lambda = 1, short = FALSE)
golf("p", lambda = 1, tag = TRUE)
p <- seq(0.02, 0.98, len = 201)
y <- golf(p, lambda = 1)
y. <- golf(p, lambda = 1, deriv = 1)
max(abs(golf(y, lambda = 1, inv = TRUE) - p)) # Should be 0
par(mfrow = c(2, 1), las = 1)
plot(p, y, type = "l", col = "blue", main = "golf()")
abline(h = 0, v = 0.5, col = "orange", lty = "dashed")
plot(p, y., type = "l", col = "blue",
main = "(Reciprocal of) first GOLF derivative")
# Another example
gdata <- data.frame(x2 = sort(runif(nn <- 1000)))
gdata <- transform(gdata, x3 = runif(nn))
gdata <- transform(gdata, mymu = exp( 3 + 1 * x2 - 2 * x3))
lambda <- 4
gdata <- transform(gdata,
y1 = rgamma(nn, shape = lambda, scale = mymu / lambda))
cutpoints <- c(-Inf, 10, 20, Inf)
gdata <- transform(gdata, cuty = Cut(y1, breaks = cutpoints))
par(mfrow = c(1, 1), las = 1)
with(gdata, plot(x2, x3, col = cuty, pch = as.character(cuty)))
with(gdata, table(cuty) / sum(table(cuty)))
fit <- vglm(cuty ~ x2 + x3, cumulative(mv = TRUE,
reverse = TRUE, parallel = TRUE, apply.parint = TRUE,
link = golf(cutpoint = cutpoints[2:3], lambda = lambda)),
data = gdata, trace = TRUE)
head(depvar(fit))
head(fitted(fit))
head(predict(fit))
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
fit@misc
Run the code above in your browser using DataLab