# NOT RUN {
# create dataset from lm helpfile
## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept
# create two amModel objects with metadata and a soft link to the data
full.model <- amModel(
lm.D9,
comment = 'full model',
source = 'lm helpfile (R).',
taxa = 'plants',
data = 'plant.data'
)
no.int.model <- amModel(
lm.D90,
comment = 'model without intercept',
source = 'lm helpfile (R).',
taxa = 'plants',
data = 'plant.data'
)
# create an amData object that includes metadata
plant.data <- data.frame(group = group, weight = weight)
plant.data <- amData(
plant.data,
comment = 'Dataset from lm helpfile.'
)
log.plant.data <- data.frame(group, log.weight=log(weight))
log.plant.data <- amData(
log.plant.data,
comment = 'data to fit log model',
source = 'lm helpfile (R).'
)
# create an amModelLib that contains the two amModel objects and two amData objects
# the models and data must be supplied as named lists
mymodels <- amModelLib(
models = list(
full.model = full.model,
no.int.model = no.int.model
),
data=list(
plant.data = plant.data,
log.plant.data = log.plant.data
)
)
# search the entire amModelLib for the word 'intercept'
# the dataset associated with the model will be returned
grepAMModelLib("intercept", amml = mymodels)
# the class of returned search is an amModelLib object
class(grepAMModelLib("intercept", amml = mymodels))
# search for data containing the word 'log'
grepAMModelLib("log", amml = mymodels, search = "data")
# search for models containing the word 'full'
# Because 'full.model' is soft-linked to a dataset,
# the dataset information will be returned.
grepAMModelLib("full", amml = mymodels, search = "model")
# }
Run the code above in your browser using DataLab