groupShape(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'), dstTarget = 100, conversion = 'm2cm', ...)
"groupShape"(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'), dstTarget = 100, conversion = 'm2cm', ...)
"groupShape"(xy, plots = TRUE, bandW = 0.5, outlier=c('mcd', 'pca'), dstTarget = 100, conversion = 'm2cm', ...)
X
, Y
or Point.X
, Point.Y
as well as Aim.X
, Aim.Y
giving the point of aim. If missing, point of aim is assumed to be in (0,0).bandwith
of smoothScatter
.getMOA
.getMOA
.pcout
with outlier='pca'
- final sensitivity can be adjusted with option outbound
, a sensible candidate value seems to be around 0.45.mvoutlier
is installed.ksX
.ksY
.energy
is installed.aq.plot
- requires installing package mvoutlier
chisq.plot
, including a reference line with intercept 0 and slope 1
smoothScatter
together with group center and error ellipses (original and scaled by factor 2) based on a robust estimate for the covariance matrix (from covMcd
using the MCD algorithm)
If package shiny
is installed, an interactive web app for this functionality can be run with runGUI("analyze")
.
qqnorm
,
smoothScatter
,
hist
,
kernel
,
covMcd
,
shapiro.test
,
ks.test
,
mvnorm.etest
,
chisq.plot
,
aq.plot
,
pcout
# coordinates given by a suitable data frame
res <- groupShape(DFsavage, bandW=4, outlier='mcd',
dstTarget=100, conversion='m2mm')
names(res)
res$corXY
res$Outliers
res$multNorm
# coordinates given by a matrix
## Not run:
# xy <- matrix(round(rnorm(200, 0, 5), 2), ncol=2)
# groupShape(xy, bandW=1.6)
# ## End(Not run)
Run the code above in your browser using DataLab