# NOT RUN {
library(ggplot2)
# survival endpoint using gsSurv
# generally preferred over nSurv since time computations are shown
xgs <- gsSurv(lambdaC = .2, hr = .5, eta = .1, T = 2, minfup = 1.5)
gsBoundSummary(xgs, timename = "Year", tdigits = 1)
summary(xgs)
# survival endpoint using nSurvival
# NOTE: generally recommend gsSurv above for this!
ss <- nSurvival(
lambda1 = .2, lambda2 = .1, eta = .1, Ts = 2, Tr = .5,
sided = 1, alpha = .025, ratio = 2
)
xs <- gsDesign(nFixSurv = ss$n, n.fix = ss$nEvents, delta1 = log(ss$lambda2 / ss$lambda1))
gsBoundSummary(xs, logdelta = TRUE, ratio = ss$ratio)
# generate some of the above summary statistics for the upper bound
z <- xs$upper$bound
# B-values
gsBValue(z = z, i = 1:3, x = xs)
# hazard ratio
gsHR(z = z, i = 1:3, x = xs)
# conditional power at observed treatment effect
gsCPz(z = z[1:2], i = 1:2, x = xs)
# conditional power at H1 treatment effect
gsCPz(z = z[1:2], i = 1:2, x = xs, theta = xs$delta)
# information-based design
xinfo <- gsDesign(delta = .3, delta1 = .3)
gsBoundSummary(xinfo, Nname = "Information")
# show all available boundary descriptions
gsBoundSummary(xinfo, Nname = "Information", exclude = NULL)
# add intermediate parameter value
xinfo <- gsProbability(d = xinfo, theta = c(0, .15, .3))
class(xinfo) # note this is still as gsDesign class object
gsBoundSummary(xinfo, Nname = "Information")
# now look at a binomial endpoint; specify H0 treatment difference as p1-p2=.05
# now treatment effect at bound (say, thetahat) is transformed to
# xp$delta0 + xp$delta1*(thetahat-xp$delta0)/xp$delta
np <- nBinomial(p1 = .15, p2 = .10)
xp <- gsDesign(n.fix = np, endpoint = "Binomial", delta1 = .05)
summary(xp)
gsBoundSummary(xp, deltaname = "p[C]-p[E]")
# estimate treatment effect at lower bound
# by setting delta0=0 (default) and delta1 above in gsDesign
# treatment effect at bounds is scaled to these differences
# in this case, this is the difference in event rates
gsDelta(z = xp$lower$bound, i = 1:3, xp)
# binomial endpoint with risk ratio estimates
n.fix <- nBinomial(p1 = .3, p2 = .15, scale = "RR")
xrr <- gsDesign(k = 2, n.fix = n.fix, delta1 = log(.15 / .3), endpoint = "Binomial")
gsBoundSummary(xrr, deltaname = "RR", logdelta = TRUE)
gsRR(z = xp$lower$bound, i = 1:3, xrr)
plot(xrr, plottype = "RR")
# delta is odds-ratio: sample size slightly smaller than for relative risk or risk difference
n.fix <- nBinomial(p1 = .3, p2 = .15, scale = "OR")
xOR <- gsDesign(k = 2, n.fix = n.fix, delta1 = log(.15 / .3 / .85 * .7), endpoint = "Binomial")
gsBoundSummary(xOR, deltaname = "OR", logdelta = TRUE)
# for nice LaTeX table output, use xprint
xprint(xtable::xtable(gsBoundSummary(xOR, deltaname = "OR", logdelta = TRUE),
caption = "Table caption."))
# }
Run the code above in your browser using DataLab