Learn R Programming

MCMC4Extremes (version 1.1)

gumbelp: Posterior Distribution with GEV, where xi=0

Description

MCMC runs of posterior distribution of data with parameters of Generalized Extreme Value (GEV) density, in the particular case where xi=0 with parameters mu, sigma.

Usage

gumbelp(data, block, int=1000)

Arguments

data
data vector
block
the block size. A numeric value is interpreted as the number of data values in each successive block. All the data is used, so the last block may not contain block observations.
int
number of iteractions selected in MCMC. The program selects 1 in each 10 iteraction, then thin=10. The first thin*int/3 iteractions is used as burn-in. After that, is runned thin*int iteraction, in which 1 of thin is selected for the final MCMC chain, resulting the number of int iteractions

Value

An object of class gumbelp that gives a list containing the points of posterior distributions of mu and sigma of the gev distribution, the data, mean posterior, median posterior and the credibility interval of the parameters.

See Also

plot.gumbelp, summary.gumbelp

Examples

Run this code
# Obtaining posterior distribution of a vector of simulated points
x=rgev(200,xi=0.0001,mu=10,sigma=5)
# Obtaning 600 points of posterior distribution
ajuste=gumbelp(x,1,600)

# Maxima of each month in river nidd data
## Not run: data(nidd.annual)
## Not run: out=gumbelp(nidd.annual,1,500)

# Predictive distribution for 15 day maxima ibovespa returns
## Not run: data(ibovespa)
## Not run: postibv=gumbelp(ibovespa[,4],15,500)

Run the code above in your browser using DataLab