h2o.prcomp(training_frame, x, model_id = NULL, validation_frame = NULL, ignore_const_cols = TRUE, score_each_iteration = FALSE, transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"), pca_method = c("GramSVD", "Power", "Randomized", "GLRM"), k = 1, max_iterations = 1000, use_all_factor_levels = FALSE, compute_metrics = TRUE, impute_missing = FALSE, seed = -1, max_runtime_secs = 0)character names of the predictors in the model.Logical. Ignore constant columns. Defaults to TRUE.Logical. Whether to score during each iteration of model training. Defaults to FALSE.Logical. Whether first factor level is included in each categorical expansion Defaults to FALSE.Logical. Whether to compute metrics on the training data Defaults to TRUE.Logical. Whether to impute missing entries with the column mean Defaults to FALSE.h2o.svd, h2o.glrm
library(h2o)
h2o.init()
ausPath <- system.file("extdata", "australia.csv", package="h2o")
australia.hex <- h2o.uploadFile(path = ausPath)
h2o.prcomp(training_frame = australia.hex, k = 8, transform = "STANDARDIZE")
Run the code above in your browser using DataLab