# NOT RUN {
# Train a h2o_automl model
model <- h2o_automl(dft, Survived,
max_models = 1, target = TRUE,
ignore = c("Ticket", "Cabin", "PassengerId"),
quiet = TRUE
)
# Calculate SHAP values
SHAP_values <- h2o_shap(model)
# Equivalent to:
# SHAP_values <- h2o_shap(
# model = model$model,
# test = model$datasets$test,
# scores = model$scores_test$scores)
# Check SHAP results
head(SHAP_values)
# You must have "ggbeeswarm" library to use this auxiliary function:
# Plot SHAP values (feature importance)
plot(SHAP_values)
# Plot some of the variables (categorical)
shap_var(SHAP_values, Pclass)
# Plot some of the variables (numerical)
shap_var(SHAP_values, Fare)
# }
Run the code above in your browser using DataLab