Jie Cheng, Tianxi Li, Elizaveta Levina, and Ji Zhu.(2017)
High-dimensional Mixed Graphical Models. Journal of Computational and Graphical Statistics 26.2: 367-378,
https://arxiv.org/pdf/1304.2810.pdf
Simon, N., Friedman, J., Hastie,T., Tibshirani, R. (2011)
Regularization Paths for Cox's ProportionalHazards Model via Coordinate Descent, Journal of Statistical Software, Vol.39(5) 1-13,
https://www.jstatsoft.org/v39/i05/
Meinshausen, N. and Buhlmann, P. (2006)
High dimensional graphs and variable selection with the lasso, Annals of Statistics, 34, 1436<U+2013>1462.,
https://arxiv.org/pdf/math/0608017.pdf
Ravikumar, P., Wainwright, M., and Lafferty, J. (2010)
High-dimensionalIsing model selection using l1-regularized logistic regression,Annals of
Statistics, 38, 1287<U+2013>1319.,
https://arxiv.org/pdf/1010.0311.pdf
Liu, H., Han, F., Yuan, M., Lafferty, J., and Wasserman, L. (2012)
High dimensional semiparametric Gaussian copula graphical models, Annals
of Statistics, 40, 2293<U+2013>2326.,
https://arxiv.org/pdf/1202.2169.pdf
Zhao, P., Rocha, G., and Yu, B. (2009)
The composite absolute penalties family for grouped and hierarchical variable selection, The Annals of
Statistics, 3468<U+2013>3497.,
https://arxiv.org/pdf/0909.0411.pdf