Learn R Programming

tidycomm

Tidycomm provides convenience functions for common tasks in communication research. All functions follow the style and syntax of the tidyverse.

Currently, tidycomm includes functions for various methods of univariate and bivariate data description and analysis, data modification, and intercoder reliability tests.

Installation

Install tidycomm from CRAN:

install.packages("tidycomm")

Or install the most recent development version of tidycomm with:

remotes::install_github("joon-e/tidycomm")

Usage

library(tidycomm)

tidycomm functions follow the style and syntax of the tidyverse functions:

  • they always assume a tibble as their first argument
  • they will always return a tibble as well, so they can be easily integrated into pipes
  • data variables (tibble columns) are passed to function calls directly as symbols
WoJ %>% # Worlds of Journalism sample data
  describe(autonomy_selection, autonomy_emphasis)
#> # A tibble: 2 × 15
#>   Variable             N Missing     M    SD   Min   Q25   Mdn   Q75   Max Range
#> * <chr>            <int>   <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 autonomy_select…  1197       3  3.88 0.803     1     4     4     4     5     4
#> 2 autonomy_emphas…  1195       5  4.08 0.793     1     4     4     5     5     4
#> # ℹ 4 more variables: CI_95_LL <dbl>, CI_95_UL <dbl>, Skewness <dbl>,
#> #   Kurtosis <dbl>

Most functions will automatically use all relevant variables in the data if no variables are specified in the function call. For example, to compute descriptive statistics for all numeric variables in the data, just call describe() without further arguments:

WoJ %>% 
  describe()
#> # A tibble: 11 × 15
#>    Variable           N Missing     M     SD   Min   Q25   Mdn   Q75   Max Range
#>  * <chr>          <int>   <int> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1 autonomy_sele…  1197       3  3.88  0.803     1  4        4     4     5     4
#>  2 autonomy_emph…  1195       5  4.08  0.793     1  4        4     5     5     4
#>  3 ethics_1        1200       0  1.63  0.892     1  1        1     2     5     4
#>  4 ethics_2        1200       0  3.21  1.26      1  2        4     4     5     4
#>  5 ethics_3        1200       0  2.39  1.13      1  2        2     3     5     4
#>  6 ethics_4        1200       0  2.58  1.25      1  1.75     2     4     5     4
#>  7 work_experien…  1187      13 17.8  10.9       1  8       17    25    53    52
#>  8 trust_parliam…  1200       0  3.05  0.811     1  3        3     4     5     4
#>  9 trust_governm…  1200       0  2.82  0.854     1  2        3     3     5     4
#> 10 trust_parties   1200       0  2.42  0.736     1  2        2     3     4     3
#> 11 trust_politic…  1200       0  2.52  0.712     1  2        3     3     4     3
#> # ℹ 4 more variables: CI_95_LL <dbl>, CI_95_UL <dbl>, Skewness <dbl>,
#> #   Kurtosis <dbl>

Likewise, compute intercoder reliability tests for all variables by only specifying the post and coder ID variables:

fbposts %>% # Facebook post codings sample data
  test_icr(post_id, coder_id)
#> # A tibble: 5 × 8
#>   Variable     n_Units n_Coders n_Categories Level   Agreement Holstis_CR
#> * <chr>          <int>    <int>        <int> <chr>       <dbl>      <dbl>
#> 1 type              45        6            4 nominal     1          1    
#> 2 n_pictures        45        6            7 nominal     0.822      0.930
#> 3 pop_elite         45        6            6 nominal     0.733      0.861
#> 4 pop_people        45        6            2 nominal     0.778      0.916
#> 5 pop_othering      45        6            4 nominal     0.867      0.945
#> # ℹ 1 more variable: Krippendorffs_Alpha <dbl>

For detailed examples of all available functions, see the documentation website or read the vignettes:

browseVignettes("tidycomm")

Copy Link

Version

Install

install.packages('tidycomm')

Monthly Downloads

473

Version

0.4.1

License

GPL-3

Maintainer

Julian Unkel

Last Published

February 22nd, 2024

Functions in tidycomm (0.4.1)

get_reliability

Get reliability estimates of index variables
percentage_labeller

Helper function for labelling purposes
%>%

Pipe operator
rescale

Rescale continuous vector to have specified minimum and maximum
regress

Compute linear regression
recode_cat_scale

Recode one or more categorical variables into new categories
rescale_max

Rescale numeric vector to have specified maximum
fbposts

Facebook posts reliability test
tdcmm-class

tdcmm class
test_icr

Perform an intercoder reliability test
snscomments

SNS Comments data
t_test

Compute t-tests
unianova

Compute one-way ANOVAs
setna_scale

Set specified values to NA in selected variables or entire data frame
to_correlation_matrix

Create correlation matrix
reverse_scale

Reverse numeric, logical, or date/time continuous variables
zero_range

Determine if range of vector is close to zero, with a specified tolerance
rescale_none

Don't perform rescaling
tab_frequencies

Tabulate frequencies
tab_percentiles

Tabulate percentiles for numeric variables
rescale_mid

Rescale vector to have specified minimum, midpoint, and maximum
z_scale

Z-standardize numeric, continuous variables
visualize.tdcmm_ctgrcl

Visualize tidycomm output
design_gray

Gray design
categorize_scale

Categorize numeric variables into categories
add_index

Add index
describe

Describe numeric variables
WoJ

Worlds of Journalism sample data
describe_cat

Describe categorical variables
new_tdcmm

tdcmm output constructor
incvlcomments

Incivil Comments Data
design_lmu

Colorbrewer-inspired design with focus on LMU (lmu.de) green
center_scale

Center numeric, continuous variables
dummify_scale

Convert categorical variables to dummy variables
correlate

Compute correlation coefficients
minmax_scale

Rescale numeric continuous variables to new minimum/maximum boundaries
model

Access model(s) used to estimate output
design_grey

Grey design
crosstab

Crosstab variables
oob

Out of bounds handling
expand_range

Expand a range with a multiplicative or additive constant