huber1(llocation = "identity", k = 0.862, imethod = 1)
huber2(llocation = "identity", lscale = "loge",
k = 0.862, imethod = 1, zero = 2)
Links
for more choices.rhuber
for more information.CommonVGAMffArguments
for information.
The default value of zero
means the scale parameter is
modelled as an intercept-only."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.By default, the mean is the first linear/additive predictor (returned as the fitted values; this is the location parameter), and the log of the scale parameter is the second linear/additive predictor. The Fisher information matrix is diagonal; Fisher scoring is implemented.
The huber1()
estimates only the
location parameter. It assumes a scale parameter of unit value.
rhuber
,
uninormal
,
gaussianff
,
laplace
,
CommonVGAMffArguments
.set.seed(1231); NN <- 30; coef1 <- 1; coef2 <- 10
hdata <- data.frame(x2 = sort(runif(NN)))
hdata <- transform(hdata, y = rhuber(NN, mu = coef1 + coef2 * x2))
hdata$x2[1] <- 0.0 # Add an outlier
hdata$y[1] <- 10
fit.huber2 <- vglm(y ~ x2, huber2(imethod = 3), hdata, trace = TRUE)
fit.huber1 <- vglm(y ~ x2, huber1(imethod = 3), hdata, trace = TRUE)
coef(fit.huber2, matrix = TRUE)
summary(fit.huber2)
# Plot the results
plot(y ~ x2, hdata, col = "blue", las = 1)
lines(fitted(fit.huber2) ~ x2, hdata, col = "darkgreen", lwd = 2)
fit.lm <- lm(y ~ x2, hdata) # Compare to a LM:
lines(fitted(fit.lm) ~ x2, hdata, col = "lavender", lwd = 3)
# Compare to truth:
lines(coef1 + coef2 * x2 ~ x2, hdata, col = "orange", lwd = 2, lty = "dashed")
legend("bottomright", legend = c("truth", "huber", "lm"),
col = c("orange", "darkgreen", "lavender"),
lty = c("dashed", "solid", "solid"), lwd = c(2, 2, 3))
Run the code above in your browser using DataLab