y
.
ses(y, h=10, level=c(80,95), fan=FALSE, initial=c("optimal","simple"), alpha=NULL, lambda=NULL, biasadj=FALSE, x=y, ...)
holt(y, h=10, damped=FALSE, level=c(80,95), fan=FALSE, initial=c("optimal","simple"), exponential=FALSE, alpha=NULL, beta=NULL, lambda=NULL, biasadj=FALSE, x=y, ...)
hw(y, h=2*frequency(x), seasonal=c("additive","multiplicative"), damped=FALSE, level=c(80,95), fan=FALSE, initial=c("optimal","simple"), exponential=FALSE, alpha=NULL, beta=NULL, gamma=NULL, lambda=NULL, biasadj=FALSE, x=y, ...)
hw
model. "additive" or "multiplicative"optimal
, the initial values are optimized along with the smoothing parameters using ets
. If simple
, the initial values are set to values obtained using simple calculations on the first few observations. See Hyndman & Athanasopoulos (2014) for details.NULL
, it will be estimated.NULL
, it will be estimated.NULL
, it will be estimated.lambda=TRUE
, additive.only
is set to FALSE.forecast.ets
.forecast
".The function summary
is used to obtain and print a summary of the
results, while the function plot
produces a plot of the forecasts and prediction intervals.The generic accessor functions fitted.values
and residuals
extract useful features of
the value returned by ets
and associated functions.An object of class "forecast"
is a list containing at least the following elements:
is a list containing at least the following elements:forecast(ets(...))
.
Hyndman, R.J., Athanasopoulos (2014) Forecasting: principles and practice, OTexts: Melbourne, Australia. http://www.otexts.org/fpp.
ets
, HoltWinters
, rwf
, arima
.fcast <- holt(airmiles)
plot(fcast)
deaths.fcast <- hw(USAccDeaths,h=48)
plot(deaths.fcast)
Run the code above in your browser using DataLab