Estimation of the parameter of the hyperbolic secant distribution.
hypersecant(link.theta = extlogit(min = -pi/2, max = pi/2), init.theta = NULL)
hypersecant01(link.theta = extlogit(min = -pi/2, max = pi/2), init.theta = NULL)
Parameter link function applied to the parameter Links
for more choices.
Optional initial value for
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The probability density function of the hyperbolic secant distribution
is given by
Another parameterization is used for hypersecant01()
:
let
For both parameterizations Newton-Raphson is same as Fisher scoring.
Jorgensen, B. (1997) The Theory of Dispersion Models. London: Chapman & Hall.
Morris, C. N. (1982) Natural exponential families with quadratic variance functions. The Annals of Statistics, 10(1), 65--80.
# NOT RUN {
hdata <- data.frame(x2 = rnorm(nn <- 200))
hdata <- transform(hdata, y = rnorm(nn)) # Not very good data!
fit1 <- vglm(y ~ x2, hypersecant, data = hdata, trace = TRUE, crit = "coef")
coef(fit1, matrix = TRUE)
fit1@misc$earg
# Not recommended:
fit2 <- vglm(y ~ x2, hypersecant(link = "identitylink"), data = hdata, trace = TRUE)
coef(fit2, matrix = TRUE)
fit2@misc$earg
# }
Run the code above in your browser using DataLab