hzTest(data, cov = TRUE, qqplot = FALSE)
TRUE
covariance matrix is normalized by n
, if FALSE
it is normalized by n-1
TRUE
it creates a chi-square Q-Q plot
0.05
HZ
testHenze, N. and Zirkler, B. (1990), A Class of Invariant Consistent Tests for Multivariate Normality. Commun. Statist.-Theor. Meth., 19(10): 35953618. Henze, N. and Wagner, Th. (1997), A New Approach to the BHEP tests for multivariate normality. Journal of Multivariate Analysis, 62:1-23.
Johnson, R. A. and Wichern, D. W. (1992), Applied Multivariate Statistical Analysis. 3rd. ed. New-Jersey:Prentice Hall. Mecklin, C. J. and Mundfrom, D. J. (2003), On Using Asymptotic Critical Values in Testing for Multivariate Normality. http://interstat.statjournals.net/YEAR/2003/articles/0301001.pdf
roystonTest
mardiaTest
mvnPlot
mvOutlier
uniPlot
uniNorm
setosa = iris[1:50, 1:4] # Iris data only for setosa and four variables
result = hzTest(setosa, qqplot = TRUE)
result
Run the code above in your browser using DataLab