twinstim
object.iafplot(object, which = c("siaf", "tiaf"),
types = 1:nrow(object$qmatrix), scaled = FALSE,
conf.type = if (length(pars) > 1) "bootstrap" else "parbounds",
conf.level = 0.95, conf.B = 999, xgrid = 101,
col.estimate = rainbow(length(types)), col.conf = col.estimate,
alpha.B = 0.15, lwd = c(3,1), lty = c(1,2), xlim = NULL, ylim = NULL,
add = FALSE, xlab = NULL, ylab = NULL,
legend = !add && (length(types) > 1), ...)
"twinstim"
containing the fitted model."siaf"
(default) for the spatial interaction
function and "tiaf"
for the temporal interaction function.types
the interaction function should be plotted in case of a marked twinstim."bootstrap"
,
conf.B
parameter values (vectors) are sampled from the
asymptotic (multivariate) normal distribution of the ML estimate(s) of the
interaction function parametersconf.type = "bootstrap"
it
may also be specified as NA
, in which case all conf.B
bootstrapped functions will be plotted with transparency value given
by alpha.B
"bootstrap"
confidence interval.which
, or a scalar representing the desired number of
evaluation points in the interval c(0,xlim[2])
.types
.types
.conf.B
bootstrapped interaction functions in case conf.level = NA
scaled
).
The default x-axis ranges from 0 to the length of the
observation period (wh
NULL
providing sensible defaults.types
should be added.
It can also be a list of arguments passed to legend
to tweak the default settings.plot
method.NULL
is returned (invisibly).plot.twinstim
, which calls this function.data("imdepifit")
iafplot(imdepifit, "tiaf", types=1) # tiaf.constant(), not very exciting
iafplot(imdepifit, "siaf", types=1, # same for types=2
xlim=c(0,200), col.estimate=1, lwd=c(2,1))
# scaled version and bootstrap-CI (used if 'siaf' has more than one parameter)
iafplot(imdepifit, "siaf", types=1, scaled=TRUE, xlim=c(0,200),
conf.type="bootstrap", col.estimate=2)
Run the code above in your browser using DataLab