# NOT RUN {
# generate expression data matrix
exprsDataObj = generate.ExpressionData(nSamples1 = 6, nSamples2 = 6,
meanSamples = 0, sdSamples = 0.2,
nFeatures = 1000, nFeaturesUp = 50, nFeaturesDown = 50,
meanDynRange = 20, sdDynRange = 1,
meanDiffAbund = 1, sdDiffAbund = 0.2)
exprsData = exprsDataObj[[1]]
# insert 15% missing data with 100% missing not at random
m.THR = quantile(exprsData, probs = 0.15)
sd.THR = 0.1
MNAR.rate = 100
exprsData.MD.obj = insertMVs(exprsData,m.THR,sd.THR,MNAR.rate)
exprsData.MD = exprsData.MD.obj[[2]]
# perform missing data imputation
exprsData.imputed = impute.wrapper.KNN(exprsData.MD,15)
## The function is currently defined as
function (dataSet.mvs, K)
{
resultKNN = impute.knn(dataSet.mvs, k = K, rowmax = 0.99,
colmax = 0.99, maxp = 1500, rng.seed = sample(1:1000,
1))
dataSet.imputed = resultKNN[[1]]
return(dataSet.imputed)
}
# }
Run the code above in your browser using DataLab