Learn R Programming

mclust (version 5.4.3)

imputeData: Missing data imputation via the mix package

Description

Imputes missing data using the mix package.

Usage

imputeData(data, categorical = NULL, seed = NULL, verbose = interactive())

Arguments

data

A numeric vector, matrix, or data frame of observations containing missing values. Categorical variables are allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

categorical

A logical vectors whose ith entry is TRUE if the ith variable or column of data is to be interpreted as categorical and FALSE otherwise. The default is to assume that a variable is to be interpreted as categorical only if it is a factor.

seed

A seed for the function rngseed that is used to initialize the random number generator in mix. By default, a seed is chosen uniformly in the interval (.Machine$integer.max/1024, .Machine$integer.max).

verbose

A logical, if TRUE reports info about iterations of the algorithm.

Value

A dataset of the same dimensions as data with missing values filled in.

References

Schafer J. L. (1997). Analysis of Imcomplete Multivariate Data, Chapman and Hall.

See Also

imputePairs

Examples

Run this code
# NOT RUN {
# Note that package 'mix' must be installed
data(stlouis, package = "mix")
 
# impute the continuos variables in the stlouis data
stlimp <- imputeData(stlouis[,-(1:3)])

# plot imputed values
imputePairs(stlouis[,-(1:3)], stlimp)
# }

Run the code above in your browser using DataLab