Learn R Programming

PoisBinNonNor (version 1.3.3)

intermediate.corr.BB: Computes an intermediate normal correlation matrix for binary variables given the specified correlation matrix

Description

Computes an intermediate normal correlation matrix for binary variables before dichotomization given the specified correlation matrix.

Usage

intermediate.corr.BB(n.P, n.B, n.C, prop.vec, corr.vec = NULL, corr.mat = NULL)

Arguments

n.P

Number of Poisson variables.

n.B

Number of binary variables.

n.C

Number of continuous variables.

prop.vec

Proportion vector for binary variables.

corr.vec

Vector of elements below the diagonal of correlation matrix ordered column-wise.

corr.mat

Specified correlation matrix.

Value

A correlation matrix of size n.B*n.B.

References

Demirtas, H., Hedeker, D., and Mermelstein, R.J. (2012). Simulation of massive public health data by power polynomials. Statistics in Medicine, 31(27), 3337-3346.

See Also

intermediate.corr.PB, intermediate.corr.BC

Examples

Run this code
# NOT RUN {
n.P<-2
n.B<-2
n.C<-2
prop.vec=c(0.4,0.7)
corr.vec = NULL
corr.mat=matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3,1.0,-0.3,-0.3,-0.3,-0.3,
-0.3,-0.3,1.0,0.4,0.5,0.6,
-0.3,-0.3,0.4,1.0,0.7,0.8,
-0.3,-0.3,0.5,0.7,1.0,0.9,
-0.3,-0.3,0.6,0.8,0.9,1.0),6,by=TRUE)

intmatBB=intermediate.corr.BB(n.P,n.B,n.C,prop.vec,corr.vec=NULL,corr.mat)
intmatBB
# }

Run the code above in your browser using DataLab