Learn R Programming

Rssa (version 0.13-1)

iossa.result: Summary of Iterative O-SSA results

Description

Various routines to print Iterative Oblique SSA results

Usage

"print"(x, digits = max(3, getOption("digits") - 3), ...) "summary"(object, digits = max(3, getOption("digits") - 3), ...)

Arguments

x, object
object of class `iossa.result' or `ossa'
digits
integer, used for number formatting
...
further arguments passed to method

Details

An object of class `iossa.result' is a list with the following fields:
converged
logical, whether algorithm has been converged

iter
the number of OSSA iterations

cond
numeric vector with two elements, condition numbers of the final column and row inner products

initial.tau
numeric vector, proportions of high rank components contribution for each of initial series (denotes how well the series is approximated by a series of finite rank)

tau
numeric vector, proportions of high rank components contribution for each of final series

initial.wcor
W-correlation matrix of the initial nested decomposition

wcor
W-correlations matrix of the final nested decomposition

owcor
oblique W-correlation matrix (see owcor) of the final nested decomposition

initial.rec
list of initial series (reconstructed initial nested decomposition)

kappa, maxiter, tol
Iterative O-SSA procedure parameters

References

Golyandina N. and Shlemov A. (2013): Variations of Singular Spectrum Analysis for separability improvement: non-orthogonal decompositions of time series, http://arxiv.org/abs/1308.4022

See Also

Rssa for an overview of the package, as well as, iossa, owcor, summary.ssa.

Examples

Run this code

# Separate three non-separable sines with different amplitudes
N <- 150
L <- 70

omega1 <- 0.05
omega2 <- 0.06
omega3 <- 0.07

F <- 4*sin(2*pi*omega1 * (1:N)) + 2*sin(2*pi*omega2 * (1:N)) + sin(2*pi*omega3 * (1:N))
s <- ssa(F, L)
ios <- iossa(s, nested.groups = list(1:2, 3:4, 5:6), kappa = NULL, maxiter = 100, tol = 1e-3)

print(ios)
print(ios$iossa.result)

Run the code above in your browser using DataLab